

Challenge programmation pour l'ISS (Astropi)

Objectif

Proposer une expérience à embarquer dans la station spatiale internationale.

Le challenge

Tout d'abord, il faudra apprendre un maximum de choses sur l'ISS et l'activité des astronautes. Une fois ces connaissances acquises, vous pourrez proposer une idée de mission qui permettra à votre classe d'être sélectionnée et de remporter un kit Astro Pi. Une fois sélectionnée, l'équipe devra relever un défi scientifique lancé par Thomas Pesquet. Votre

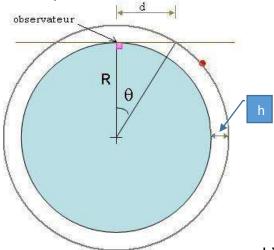
solution à ce défi sera un programme Python, écrit et testé grâce au kit Astro Pi! L'ESA et le CNES enverront les meilleurs programmes à Thomas Pesquet quand il sera près d'Ed, dans l'ISS, et transmettront à la classe les résultats des expériences sélectionnées.

Qu'est-ce que l'ISS ?

http://www.esa.int/spaceinvideos/Videos/2016/05/Narrated_tour_of_the_International_ _Space_Station

A quoi sert-elle?

http://www.esa.int/Our_Activities/Human_Spaceflight/Blue_dot/Highlights/Science_in_space


A quelle vitesse v doit évoluer l'ISS par rapport à un référentiel terrestre galiléen pour pouvoir ne plus être attiré par la force de gravitation de la terre ?

https://www.youtube.com/watch?v=pTydlh8ifoA

Données :

- rayon de la Terre : R = 6380 km
- masse de la station : m = 435 tonnes
- masse de la Station : In = 435 torries masse de la Terre, supposée ponctuelle : M = 5,98 ×10²⁴ kg constante de gravitation universelle : G = 6,67×10⁻¹¹ m³.kg⁻¹.s⁻² $\frac{G \cdot M}{(R+h)^2} = \frac{v^2}{(R+h)^2}$
- altitude de la station ISS : h

La station spatiale internationale, supposée ponctuelle et notée S, évolue sur une orbite qu'on admettra circulaire. Son altitude est environ égale à h=400 km.

plusieurs critères.

L'altitude de 400km a été choisie en fonction de

Déduis-en la période de révolution de l'ISS autour de la terre en heure, minute, seconde.

Confronte tes résultats à ceux du site de l'ESA.

Où est l'ISS?

Pour localiser en temps réel la position de l'ISS.

http://www.esa.int/Our Activities/Human Spaceflight/International Space Station/W here_is_the_International_Space_Station

http://www.satflare.com/track.asp?q=25544#LIST

Visite virtuelle de l'ISS

http://www.esa.int/Our_Activities/Human_Spaceflight/International_Space_Station/Hi ghlights/International Space Station_panoramic tour

Idées de mission

Tu vas rechercher des idées d'expériences à réaliser sur l'ISS.

https://www.youtube.com/watch?v=8MR3daaWLXI

Orientation exacte de l'astropi dans le module Colombus de l'ISS

https://www.flickr.com/photos/timpeake/25225355364/

Utilisation de l'IMU

https://www.raspberrypi.org/learning/astro-pi-guide/sensors/movement.md

La durée d'une mission sera un maximum de 24h!

Nombre de rotations de l'ISS autour de la terrer.

Mesure de la gravitation autour de la terre, est-ce constant ?

J.Launay